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Abstract— In this paper, a fuzzy modeling technique is used for the selection of end milling parameters for a required surface roughness 
(SR) with maximum material removal rate (MRR). Feed rate (Fr), radial depth of cut (Dr) and axial depth of cut (Da) are the inputs and 
outputs are MRR and SR. Three different levels of each input parameter were used to curry out the experimental work: Fr = 100; 200; 300 
mm/min, Dr = 0.1; 0.2; 0.3 mm, Da = 3; 3.5; 4 mm. Optimal sets of parameters were identified using artificial neural network (ANN) coupled 
with genetic algorithm (GA). Fuzzy logic model (FLM) was used to develop a fuzzy rule base in the form of IF-THEN rules for the selection 
of cutting parameters. The performance of the developed model was evaluated through a validation test and shows that FLM is a 
successful tool for end milling parameters selection with closer relationship with the experimental results. The accuracy of the developed 
model is around 98%. 

 
Keywords— Artificial Neural Network, End milling, Fuzzy Logic Model, Genetic Algorithm 

——————————      —————————— 

1 INTRODUCTION 
  ne of the practical problem in machining is selecting the    
  proper cutting conditions for a given operation.  
  Machining is a manufacturing process in which a sharp 

cutting tool is used to cut away material to leave the desired 
part shape [1]. Machining, also referred to as cutting, metal 
cutting, or material removal, is the dominant manufacturing 
shaping process. It is both a primary as well as secondary 
shaping process [2]. 

End milling is an important and common machining 
operation, because of its versatility and capability to produce 
various profiles and curved surfaces. The cuter can remove 
material on both its end and its cylindrical cutting edges [3]. 
Applications of end milling process can be found in many 
industries ranging from large aerospace manufacturers to 
small tool and die shops. Reason for its popularity include the 
fact that it may be used for the rough and finishing machining 
of such features as slots, pockets, peripheries, and faces of 
components [4]. 

SS 400 steel is most frequently used material during 
design of mechanical mechanism/parts (hardness 160 HB). In 
JIS (Japanese Industrial Standard) “SS” stands for Structural 
steel and 400 grade which is similar to AISI 1018. Typical 
carbon steel material, SS 400 steel has most economic value for 
structure parts and is excelling in welding and machinability 
and can be subjected to various heat treatments. 
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In machining operations, the cutting conditions such as 

cutting speed, feed rate, depth of cut, features of tools and 
work piece materials affect the process efficiency and 
performance characteristics [5]. The selection of optimum 
machining parameters is difficult and relies heavily on the 
operator experience and the machining hand books provided 
by the cutting tool manufacturer for the targeted material. 
Hence, the optimization of machining parameters is of greater 
importance where the economy as well as quality of the 
machined part plays a key role [6]. 

Optimization involves determining optimal process 
parameters in order to optimize an objective function. Some of 
the essential objective functions in machining include 
minimizing the cost of production, surface roughness, cutting 
force, tool wear, and flank wear, as well as maximizing metal 
removal rate, production rate, and tool life [7]. However, the 
improvement of one objective function is not possible without 
the worsening of at least one of the other objective function. 

This work aims to optimize multi-objective functions (e.g. 
minimizing surface roughness and maximizing metal removal 
rate) in end milling of SS 400 steel using high speed steel HSS 
Co8 end mill. 

In the case of multiple objectives, there does not 
necessarily exist such a solution that is the best with respect to 
all objectives because of incommensurability and conflict 
among objectives. A solution may be best in one objective but 
worst in other objectives. Therefore, there usually exists a set 
of solutions for the multiple objective cases which cannot 
simply be compared with each other. Decision should be 
made among this set of solutions also called alternatives in 
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order to choose the one that best fits with our goals, objective, 
desires, values, and so on. 

At present, decisions concerning the cutting parameters 
used in machining operation are based on experience. So, it 
needs a tool that will allow to select the most appropriate 
machining parameters in order to improve cutting efficiency, 
process at low cost, and produce high-quality products.  

A non-exhaustive presentation of development of 
decision making systems for machining operations is given in 
the following. 

A decision making model for the selection of die sinking 
Electrical Discharge Machining (EDM) parameters was 
developed, in order to achieve green EDM [8]. A combination 
of Taguchi and fuzzy TOPSIS methods has been used to solve 
multi-response parameter optimization problems. An 
experimental investigation was carried out based on Taguchi 
L9 orthogonal array to analyze the sensitivity of green 
manufacturing attributes to the variations in process 
parameters such as peak current, pulse duration, dielectric 
level and flushing pressure. An analytical model was 
developed for optimizing the process parameters. A fuzzy-
based algorithm was introduced for prediction of material 
removal rate (MRR), Tool wear ratio (TWR) and surface 
roughness (Rz, Rk) in the EDM and ultrasonic-assisted EDM 
(US/EDM) processes [9]. Discharge current, pulse duration 
and ultrasonic vibration of tool are the input variables and 
outputs are MRR, TWR, Rz and Rk. A fuzzy rule-based system 
was developed to provide a more precise and easy selection of 
EDM and US/EDM input parameters, respectively for the 
required MRR, TWR, Rz and Rk which leads to better 
machining conditions and decreases the machining cost. The 
effect of various EDM input parameters as well as the 
influence of different tool geometry on material removal rate 
(MRR), tool wear rate (TWR), and surface roughness (SR) has 
been investigated in machining of Inconel 718 by using copper 
electrode [10]. Pulse on time, pulse off time, peak current, 
flushing pressure and electrode tool geometry were 
considered in this work. Tool geometry for the electrodes was 
circle, square, rectangle and triangle. Four different levels for 
the five input parameters were planned as per the L16 
orthogonal array. Multi-objective optimization technique of 
desirability approach was used to optimize the parameters 
and the significance of each parameter was analyzed by 
analysis of variance (ANOVA). Finally, Fuzzy Logic Model 
(FLM) was used to better understand the input and the output 
response. With the desirability approach, it was sought to 
optimize the values of copper electrode for maximum MRR, 
and minimum TWR and SR. Hybrid algorithms employing 
neural network embedded with genetic algorithm and particle 
swarm optimization technique were developed to predict 
machining quality for a given set of process parameters in 
CNC turning process [11]. Experiments were designed based 
on Taguchi Design of Experiments (DoE) and conducted with 
cutting speed, feed rate, depth of cut and nose radius as the 

process parameters and surface roughness and power 
consumption as objectives. Signal-to-noise (S/N) ratios of 
responses were calculated to identify the influence of process 
parameters using analysis of variance (ANOVA). The 
developed model can be used for deciding the machining 
parameters to attain quality with minimum power 
consumption and hence maximum productivity. In [6], a new 
approach to selection of machining parameters in turning of 
Inconel 718 by using an intelligent technique was illustrated. 
The machining parameters are optimized based on the multi-
objectives which are limiting the cost and quality of the 
machining process. The machining experiment has been 
conducted using uncoated carbide tool under dry machining 
condition. Using the experimental responses mathematical 
models were developed for the objective functions as well as 
constraints in the multi-objective optimization. The multiple 
attribute decision making (MADM) method is used to select a 
single solution from the optimized results which are a set of 
non-dominated solutions for their multi-objective 
optimization. The MADM method helped to evaluate and 
rank the machining parameters. The higher rank solution was 
selected as the best solution for the machining of Inconel 718 
in that respective environment. Multi-objective optimization 
techniques in high speed machining of Inconel 718 using 
carbide cutting tool were presented [7]. A set of non-
dominated solutions were obtained using non-sorted genetic 
algorithm for multi-objective functions. A multi-criteria 
decision making (MCDM) concept based on technique for 
order preference by similarity to ideal solution (TOPSIS) was 
used for selecting a single solution from non-dominated 
solutions. TOPSIS determine the shortest distance to the 
positive-ideal solution and the greatest distance from the 
negative-ideal solution. Six objective functions (e.g. 
minimizing surface roughness, flank wear, cutting force and 
power consumption as well as maximizing tool life and 
material removal rate) were considered as attributes against 
the process variables of cutting speed, feed, and depth of cut. 
The higher-ranked solution was selected as the best solution 
for the machining of Inconel 718 in its respective environment. 
An optimization method has been developed for effectively 
performing simultaneous optimization of well-known surface 
quality characteristics like arithmetic average (Ra), average 
distance between the highest peak and lowest valley (Rz) and 
maximum height of the profile (Rt) in turning of EN 1.4404 
austenitic, EN 1.4462 standard duplex and EN 1.4410 super 
alloy stainless steels [12]. Taguchi approach was coupled with 
fuzzy-multiple attribute decision making (FMADM) methods 
for achieving better surface quality in constant cutting speed 
face turning. The results were further analyzed using analysis 
of means (AMON) and analysis    of variance (ANOVA). The 
difference in machinability among machined stainless steels 
was additionally reported through presenting chip breaking 
chart. In 2, intelligent hybrid decision making tools were 
applied to find the optimal process parameters in CNC 
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turning of EN 31. The CNC turning was investigated by 
considering the performance measures, material removal rate 
(MRR), tool wear (TW) in terms of spindle speed, feed rate, 
and depth of cut as control factors. The experiment was 
conducted as per the design of experiments, and then artificial 
neural network (ANN) was applied to predict the models for 
the chosen output responses. The models were tested for its 
adequacy using ANOVA analysis and chosen for subsequent 
optimization of the process parameters using evolutionary 
techniques like genetic algorithm (GA).  
      The main issue of these works is the use of evolutionary 
(non-conventional) optimization techniques to solve multi-
objective optimization problems in machining processes. 
Evolutionary optimization techniques are the new trend for 
optimization of the machining process parameters. Today 
machining problems are more complex so that single 
optimization techniques have limited values to fix the optimal 
cutting conditions. Evolutionary techniques are particularly 
suitable to solve multi-objective optimization problems 
because they deal simultaneously with a set of possible 
solutions. Furthermore, referring to previous works, 
researches on multi-objective optimization of end milling 
parameters when machining SS400 using HSS co8 tool are not 
given. 
      This paper addresses the development of a decision 
making system based on fuzzy logic reasoning to identify and 
select the best combination of cutting parameters (e.g. feed 
rate, axial depth of cut, and radial depth of cut) from several 
optimal alternatives in order to minimize surface roughness 
while maximizing the production rate. The optimization 
system was based on artificial neural network (ANN) coupled 
with genetic algorithm (GA). Based on fuzzy rules, inference 
were drawn on output grade and membership values in order 
to arrive at a final decision.  
      The objective of this work is to allow better and user 
friendly selection of cutting parameters in end milling 
operations.  

      This paper is organized as follow: Section 2 presents 
some theoretical concepts related to the subject of this paper. 
Section 3 presents the experimental work procedure. In section 
4, the optimization method and results are presented. Section 
5 describes the fuzzy logic modeling procedure. In section 6, 
results and analysis are presented. Finally, conclusions are 
drawn in section 7.  
 
 
2 THEORETICAL CONCEPTS 

2.1 Artificial Neural Networks 
Artificial neural network (ANNs) consist of a number of 
elementary units called neurons. A neuron is a simple 
processor which takes one or more inputs and produces an 
output. Each input into a neuron has an associated weight that 

determines the “intensity” of the input. The processes that a 
neuron performs are: multiplication of each of the input by its 
respective weight, adding up the resulting numbers of all the 
inputs and determination of the output according to the result 
of this summation and an activation function [13].  
    The activation function defines the output of a neuron in 
terms of the activity level at its input. The basic types of 
activation functions are threshold function, piecewise-linear 
function and sigmoid function which is by far the most 
common form of activation function used in the construction 
of artificial neural networks [14]. 
    The significant functions of neural network are tackling 
non-linearity and mapping input-output information. The 
different types of neural networks in practice are back 
propagation neural network, counter propagation neural 
network, and radial basis function neural network [11]. 
    In [11], Back propagation neural network (BPNN) is a 
multiple layers ANN with input layer, output layer and some 
hidden layers between the input and output layers. Its 
learning procedure is based on gradient search with least 
mean squared optimality criteria. Once the input data is fed to 
the nodes in the input layer (oi), this will be fed to nodes (j) in 
the hidden layer through weighting factors (wji).  

The net input to node j:   
 

netj = ∑ 𝑤𝑗𝑖𝑜𝑖 −  𝑏𝑗𝑖                (1) 
 

where bj is the bias over node j.    
     The output to the node j: 
 

0j = 1

1+𝑒−𝑛𝑒𝑡𝑗
                         (2) 

 
     Similarly the outputs from nodes in the hidden layer are 
fed into nodes in the output layer. This process is called feed 
forward stage. After feed forward, the calculation output (opk) 
can be obtain from nodes in the output layer. In general, the 
output opk will not be the same as the desired known target 
tpk. Therefore, the average system error is: 
 

E =  1
2𝑝
∑ ∑ (𝑡𝑝𝑘 −  𝑜𝑝𝑘)2𝑘𝑝                    (3) 

 
     The error is then back propagated from nodes in the output 
layer to nodes in the hidden layer using gradient search 
method ∆pwkj = -η (∂E/wkj) = ηδkoj. Delta value for output 
layer is δk = ok(1 - ok)(tk - ok). Delta value for hidden layer is δ j 
= oj(1 – oj)∑wkj δk. 
     This process is called back propagation stage. After all 
examples are trained the system will collect adjusted weights 
according to ∆w ji = ∑ 𝑤𝑗𝑖𝑝 . 
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     Updating of weights is done according to: 
 

wji(n + 1) = wji(n) +∆w ji                            (4) 
 

      Supervised training works by showing the network a series 
of matching input and output examples. The network will 
adjust its weights according to the training algorithm to 
accommodate each training example. The weights from the 
“memory” of the network are the points where it stores the 
information about the problem that is trying to solve [13]. 
     The Levenberg-Marquardt algorithm selected for training 
the ANNs is a variation of the classic back propagation 
algorithm that, unlike other variations that use heuristics, 
relies on numerical optimization techniques to minimize and 
accelerate the required calculation, resulting in much faster 
training [15]. More specially, the direction in which the search 
is made is described by: 𝑥𝑘+1 = xk – 𝐴𝑘−1 gk, 
where Ak is the Hessian matrix of the error function at the 
current values of weights and biases and gk is the gradient of 
the error function. Since the error function has the form of a 
sum of squares, the Hessian matrix can be approximated as A 
= JT J 
and the gradient as  g = JT e, 
where J is the Jacobian matrix, which contains first derivatives 
of the network errors which respect to the weights and biases, 
and e is a vector of network errors. Finally, the search 
direction is given by xk+1 = xk  –  [J T J + µI ]-1 J T e. 

 
2.2 Genetic algorithm (GA) 
GA technique is based on the natural process of evolution to 
solve optimization and search problems. There are three main 
operators in GA which are reproduction, crossover and 
mutation. To apply GA in optimization of machining process 
parameters, the process parameters are encoded as genes by 
binary encoding [16]. The steps to apply GA in optimization of 
machining are as follow: (i) the process parameters are 
encoded as genes by binary encoding; (ii) A set of genes is 
combined together to form a chromosome, which is used to 
perform the basic mechanisms in the GA, such as crossover 
and mutation; (iii) crossover is the operation to exchange some 
part of two chromosomes to generate new offspring, which is 
important when exploring the whole search space rapidly; (iv) 
mutation is applied after crossover to provide a small 
randomness to new chromosomes; (v) To evaluate each 
individual or chromosome, the encoded process parameters 
are decoded from the chromosomes and are used to predict 
machining performance measures; (vi) the fitness or objective 
function is a function needed in the optimization process and 
the selection of the next generation in the GA; (vii) After a 
number of iterations of the GA, optimal results of process 

parameters are obtained by comparison of values of objective 
functions among all individuals [17], [18]. 
 
2.3 Fuzzy logic 
Fuzzy logic is a discipline that has been successful in 
automated reasoning of expert systems [19]. Fuzzy logic has 
great capability to capture human commonsense reasoning, 
decision making and other aspects of human cognition. It 
overcomes the limitations of classical logical systems, which 
impose inherent restrictions on representation of imprecise 
concepts [20]. Uncertainty, vagueness, ambiguity, and 
impreciseness are some of problems found in relationships 
between inputs and outputs of real world systems, and this 
can be tackled effectively by utilizing treatment of fuzzy logic 
[21]. Fuzzy logic uses linguistic terms to develop reasonable 
relationships between input and output variables. There are 
three main stages during the development of the model: 
formation of membership function (fuzzification), definition of 
the expert rules, and selecting defuzzification method [22]. 
 
2.3.1 Fuzzification 
Fuzzification is a kind of process in which the input data, 
precise or imprecise, is converted into a kind of linguistic form 
which is easily perceptible by the human minds, for example 
very short, highly hard etc. [21]. The ranges of input and 
output values from the optimized data set which are crisp 
values will be divided into several groups of fuzzy subsets 
and linguistic terms assigned to them. A fuzzy membership 
function is then assigned to each fuzzy subset. A membership 
function characterizes the fuzziness in a fuzzy set whether the 
elements in the set are discret or continuous in graphical form. 
There is an infinite number of methods to graphically describe 
the fuzziness: triangular, trapezoidal, Gaussian are some types 
of membership function (MF) shapes [9]. Some of them are 
illustrated on Fig. 1(a-c). 
       A triangular MF is described by three parameters a, b, c 
and given by the expression 
 

f(x;a,b,c) = max�min�𝑥−𝑎
𝑏−𝑎

, 𝑐−𝑥
𝑐−𝑏

�� (5) 
 

where the parameters a and c locate the “feet” of the triangle 
and the parameter b locates the peak” as shown in Fig.1a.  
      A trapezoidal MF has a shape of a truncated triangle. 
These may again be symmetrical or asymmetrical in shape. A 
trapezoidal MF is described by four parameters a, b, c and d, 
and given by the expression 
 

f(x;a,b,c,d) = max�min �𝑥−𝑎
𝑏−𝑎

, 1, 𝑑−𝑥
𝑑−𝑐

� , 0�    (6) 
 

where the parameters a and d locate the “feet” of the trapezoid 
and b and c locate the “shoulder” as shown in Fig. 1b. A 
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trapezoidal MF can have either narrow “shoulder” or wide 
“shoulder” [23].  
     A Gaussian MF is given by the expression 
 

f(x;σ,c) = 𝑒
−(𝑥−𝑐)2

2𝜎2   (7) 
 

where the parameter c locates the distance from the origin and 
σ indicates the width of the curve as shown in Fig. 1c.  
 
 
 
 

 
 
Fig.1. Some types of membership functions. 

 
       There is no standard method of choosing the proper shape 
of membership function for the fuzzy sets of control variables. 
Trial and error methods are usually exercised [9].  
 
2.3.2 Fuzzy rules generation 
The relationship between inputs and outputs is defined by a 
set of linguistic statements in the form of IF-THEN. Each 
statement represents a fuzzy rule. The IF part is called 
premises part and comprised of conditions or clauses 
connected to one another with logical operators such as AND, 
OR, and NOT. The THEN part is the conclusion part and 
corresponds to a conjunction of actions. Considering two 
fuzzy sets A and B with membership functions µA(u) and 

µB(u) respectively, the fuzzy operators [24] are defined in the 
following. 
      The AND operator corresponds to the intersection of the 
two sets A and B whose membership function is given by 
 

µA∩B (u) = min {µA(u), µB(u)}     (8) 
 
      The OR operator corresponds to the union of the two sets 
A and B whose membership function is given by 

 
µ𝐴∪𝐵(u) = max {µA(u), µB(u)}      (9) 

 
    The NOT operator corresponds to the complement of a 
fuzzy set which is defined as the fuzzy set of the same 
universe with membership function 
 

µAʹ(u) = 1- µA(u)   (10) 
 
     In this paper one of these rules could be IF feed rate is VL 
and axial depth of cut is S and radial depth of cut is L THEN 
surface roughness is VL and MRR is L (S = small, L = large, VL 
= very large). The set of rules constitutes the fuzzy rule base of 
the system. 
 
2.3.3 Defuzzification 
 The output response of the fuzzy process can be view only in 
fuzzy values. Crisp values need to be extracted from the fuzzy 
output sets. Defuzzification refers to the method in which a 
crisp value is extracted from a fuzzy set as a representative 
value. In general there are several methods for defuzzifying 
fuzzy sets. Centroid of area is the most widely adopted 
defuzzification strategy which is reminiscent of the calculation 
of expected values of probability distribution [9]. The crisp 
value of the output corresponds to the x-coordinate of the 
center of gravity of the aggregate output.   

Z0 = ∫𝑥µ𝑖(𝑥)𝑑𝑥
∫µ𝑖(𝑥)𝑑𝑥

 (11) 

where Z0 is the defuzzified output, µi is the membership 
function and x is the output variable [25]. 
     A fuzzy inference or reasoning mechanism allows mapping 
a given input to an output, using fuzzy logic. The mapping 
provides a basis from which decisions can be made, or 
patterns discerned. The process of fuzzy inference involves all 
of the pieces that are described in membership functions, 
logical operators and if-then rules. Fuzzy inference process 
comprises the following parts: 

• Fuzzification of the input variables. This step is 
concerned with taking the inputs and determining the 
degree to which they belong to each of the 
appropriate fuzzy sets via membership functions. 
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• Application of the fuzzy operator (AND or OR) in the 
antecedent (the IF part of the rule). If the antecedent 
of a given rule has more than one part, the fuzzy 
operator is applied to obtain one number that 
represents the result of the antecedent for that rule. 
This number is then applied to the output function. 
The input to the fuzzy operator is two or more 
membership values from fuzzified input variables. 
The output is a single truth value. 

• Implication from the antecedent to the consequent 
(the THEN part of the rule). Every rule must be 
weighted by a number between 0 and 1. After proper 
weighting has been assigned to each rule, the 
implication method is implemented. A consequent is 
a fuzzy set represented by a membership function, 
which weights appropriately the linguistic 
characteristics that are attributed to it. The consequent 
is reshaped using a function associated with the 
antecedent (a single number). The input for the 
implication process is a single number given by the 
antecedent, and the output is a fuzzy set. Implication 
is implemented for each rule. 

• Aggregation of the consequents across the rules.  The 
fuzzy sets that represent the outputs of each rule are 
combined into a single fuzzy set. Aggregation only 
occurs once for each output variable, just prior to final 
step, defuzzification. The input of the aggregation 
process is the list of truncated output functions 
returned by the implication process for each rule. The 
output of the aggregation process is one fuzzy set for 
each output variable. 

• Defuzzification. A crisp value is extracted from the 
fuzzy output. The input for the defuzzification 
process is a fuzzy set (the aggregate output fuzzy set) 
and the output is a single number. 

Mamdani and Sugeno are the most common types of 
inference system.  
 
 
3 EXPERIMENTAL WORK 

3.1 Experiment set up 
In this research work, end milling operations were conducted 
in a Victortec VNC M5200 HSP CNC milling machine under 
dry conditions and constant spindle speed of 6000 rpm. For 
the purpose of this study, finishing operation was considered. 
The monitoring system comprised: 

• A Kistler 925 BA three component piezoelectric 
dynamometer with a KISTLER type 5233A amplifier 

and National Instruments NI PXIe-1073 DAQ for 
cutting force measurement; 

• An acoustic emission (AE) KISTLER 8152B121 sensor 
and National Instruments SCB 68A DAQ for AE 
signal collection from the machining operation.   

• A computer with LABVIEW 2013 software for data 
processing and recording. 

      During the experiment, the dynamometer was fixed on the 
machine table. AE sensor was fixed on the work-piece which 
in turn was fixed on the dynamometer. By following the 
cutting path, cutting operations are performed on the right 
side of each slot previously machined on the workpiece. The 
experiment set up is shown in Fig. 2. 
 

 
 
Fig. 2. Experimental set up. 
 
3.2 Workpiece material  
The material used for the experiments was a low carbon SS 
400 steel (SS for Structural steel), most frequently used 
material during design of mechanical mechanism/parts 
(hardness 160HB). The material composition is following: 
carbon (C), not controlled; silicon (Si), not controlled; 
manganese (Mn), not controlled; phosporus (P), ≤ 0.05%; 
sulphur (S), ≤ 0.05%. 
 
3.3 Cutting tool material 
The milling cutter used was a solid four flutes cobalt-bearing 
high speed steel HSS Co8 type M42 end mill (hardness = 62-64 
HRC) having diameter of 6mm. M42 is a molybdenum-series 
high-speed steel alloy with an additional 8% cobalt, widely 
used in metal manufacturing industries because of its superior 
hot hardness, higher strength and wear resistance as 
compared to more conventional high-speed steels. The tool 
material composition is following: carbon (C) 1.08%; 
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chromium (Cr) 3.75%; molybdenum (Mo) 9.6%; tungsten (W) 
1.6%; vanadium (V) 1.15%; cobalt (Co) 8.25%. 
 
3.4 Cutting conditions 
The selected cutting conditions for the experiment were 
following:  

• Spindle speed (rpm): 6000. 
• Feed rate (mm/min): 100; 200; 300. 
• Axial depth of cut (mm): 0.1; 0.2; 0.3. 
• Radial depth of cut (mm): 3; 3.5; 4. 

 Single pass, linear cuts were executed.  
 

3.5 Surface roughness measurement 
The mean surface roughness Ra was measured with a two 
dimensional Kosaka L SE 3500 K profilometer. Five 
measurements were taken on each machined surface and the 
average value was calculated. 
 
3.6 Production rate 
MRR is the most commonly used optimization criterion of 
production rate in milling process. MRR is determined using 
the product of the cross-sectional area of the cut and the feed 
rate [1]. In the case of our study, MRR can be computed by the 
following expression: 
 

MRR = Fr ×Da× Dr                   (9) 
 
where MRR is the material removal rate (mm3/min), Da is the 
axial depth of cut (mm), Dr is the radial depth of cut (mm), 
and Fr is the feed rate (mm/min). 
 
 
4 OPTIMIZATION 
At the completion of the prediction model training, the 
optimization process was initiated and the top ten MRR 
parameter sets were then reported by the optimization system. 
A 28-14-1-1 network architecture was used to design the 
neural network. The number of epoch was 500. The transfer 
functions which has been used were tansig (hyperbolic 
tangent sigmoid transfer function) and purelin (linear transfer 
function) in hidden and output layers respectively. Training 
the network was made with the help of back propagation and 
Levenberg-Marquardt algorithms. The optimization problem 
was searching the parameter combination including feed rate, 
radial depth of cut, and axial depth of cut which lead to low 
surface roughness with maximum material removal rate. In 
addition, the optimization problem was solved under the 
constraint that the surface roughness which is predicted by 
ANNs must beneath the designed surface roughness 

threshold (e.g. 0.3µm). The optimization results are shown in 
Table 1.  
 

TABLE 1 
OPTIMIZATION RESULTS 

 

mm = millimeter, min = minute, µm = micrometer 

5 FUZZY LOGIC MODEL (FLM) 
Matlab R2013a fuzzy logic tool box was used to build the FLM 
of end milling process. After a number of trials, the input and 
output values are fuzzified using triangular and trapezoidal 
membership functions respectively. The membership 
functions are designed based on Equations 5 and 6 and 
presented in Fig. 3(a-c) and Fig. 4(a, b). The fuzzy reasoning 
was based on AND operator, Mamdani inference system, min 
(minimum) implication and max (maximum) aggregation 
method. The notation used for fuzzy subsets were as follow: 
VS (very small), S (small), M (medium), L (large), and VL 
(very large).  
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Fig. 3. Input variable Membership function plots. 

 
 

Fig. 4. Output variable membership function plots. 
 

The relationship between input and output is characterized by 
a set of linguistic statements, one experiment resulting in one 
fuzzy rule. For this work, 10 fuzzy rules were established as 
shown in Table 2. All rules have a weight of 1. Finally, the 
fuzzy values obtained from the fuzzy rules were converted 
into crisp outputs using centroid defuzzification method. 
     Graphial representation of the fuzzy logic reasoning 
procedure for test 1 for prediction of MRR and SR is shown in 
Fig.5. Rows represent the 10 rules and columns are three-
input/two-output variables. The location of triangles indicates 
the determined fuzzy sets of each input/output value. The 
height of the colored area of each triangle corresponds to the 
fuzzy membership value for that fuzzy set. For test 1, the 
input value of feed rate is 300 mm/min which belongs to VL, 
radial depth of cut is 0.30 mm which belongs to L, and axial 
depth of cut is 4 mm which belongs to L. By applying the 
fuzzy reasoning mechanism, the fuzzy outputs MRR and SR 
belong to VL. The defuzzified outputs that give the final MRR 
and SR values are calculated from the combined colored area 
shown in the bottom of MRR and SR columns in Fig. 5 (MRR = 
357mm3/min and SR = 0.208 µm). The remaining modeling 
results are shown in Table 3.  
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Fig. 5. Graphical representation of rule 1 for prediction of MRR and SR. 
 
 

TABLE 2 
FUZZY EXPRESSION OF INPUT AND OUTPUT PARAMETERS 

 
 
6 RESULTS AND ANALYSIS 
Experimental investigations were carried out to validate the 
FLM for MRR and SR. Firstly, the optimal input values (table 
1) are given to the FLM and the outputs are noted (table 3). 
The prediction error between fuzzy model values and optimal 
values were calculated using equations 12 and 13.  
 

MRRE = 𝑀𝑅𝑅𝐹𝐿𝑀−𝑀𝑅𝑅𝑂𝑝𝑡
𝑀𝑅𝑅𝐹𝐿𝑀

 × 100 (12) 
    

SRE = 𝑆𝑅𝐹𝐿𝑀−𝑆𝑅𝑂𝑝𝑡
𝑆𝑅𝐹𝐿𝑀

× 100  (13) 

 
where MRRE is the prediction error for MRR, MRROpt is the 
optimal value of MRR, MRRFLM is the fuzzy model value of 
MRR; SRE is the prediction error for SR, SROpt is the optimal 
value of SR and SRFLM is the fuzzy model value of SR. 
 

TABLE 3 
COMPARISON BETWEEN OPTIMAL AND FLM VALUES 

 
     
    Secondly, the optimal parameters were used to perform 
validation end milling operations and the surface roughness 
was measured. Similarly, errors between the validation results 
and FLM prediction were calculated and shown in Table 4. 
 

TABLE 4 
COMPARISON BETWEEN FLM AND VALIDATION VALUES 

 

 
 

The average error of the FLM is around 0.52% for MRR 
and 1.47% for SR which is due to errors in machining, 
measurement and modeling. Comparison of experimental 
results and fuzzy prediction as well as fuzzy 3D plots of MRR 
and SR are illustrated in Fig. 6(a, b), 7(a-c) and 8(a-c). Fig. 6(a, 
b) show that the fuzzy predicted values are very closer with 
the experimental values of MRR and SR. Fig. 7(a-c) and Fig. 
8(a-c) indicate that surface roughness is improved (minimum 
surface roughness) when low input parameters are used while 
the improvement of material removal rate (maximum MRR) 
resides in the use of high input parameters.  
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Fig.6. Comparison of fuzzy and experimental values (Exp = experimental 
results; FLM = fuzzy logic prediction data; Validation = validation test 
data). 
 

 

Fig. 7 Fuzzy surfaces of MRR 

 
Fig. 8 Fuzzy surfaces of SR 
 
 
7 CONCLUSION 

 
In this paper, a fuzzy system for the selection of end milling 
process parameters has been presented. Workpiece and 
cutting tool materials were SS400 steel and HSS Co8 
respectively. The optimal sets of parameters were identified 
using artificial neural network coupled with genetic 
algorithm. Fuzzy rules were then generated for the selection of 
end milling parameters for the required material removal rate 
and surface roughness. Observations of experiments results 
lead to the following conclusion: 

• Fuzzy modeling technique provides a very precise 
and easy selection of end milling parameters. 
Validation and comparison of fuzzy results with 
experimental values proved the high accuracy of the 
model (around 98%). 

• Material removal rate and surface roughness increase 
with an increase in cutting parameters. Consequently, 
surface roughness is improved (minimum surface 
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roughness) when low cutting parameters are used 
while the improvement of material removal rate 
(maximum MRR) resides in the use of high cutting 
parameters. Furthermore, surface roughness 
predominantly depends on feed rate.  
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